Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nazan Ocak, ${ }^{\text {a }}$ * Ayșen Aǧar, ${ }^{\text {b }}$
Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Aǧar, ${ }^{\text {b }}$
S. García-Granda ${ }^{c}$ and Ahmet Erdönmez ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139, Kurupelit-Samsun, Turkey,
${ }^{\text {b }}$ Ondokuz Mayıs University, Art and Science Faculty, Department of Chemistry, 55139 Samsun, Turkey, and ${ }^{\text {c }}$ Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.044$
$w R$ factor $=0.138$
Data-to-parameter ratio $=11.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,4'-(N-Phenyl-2,2'-iminodiethanoxy)diphthalonitrile

The title compound, $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$, contains three aromatic rings, which are not coplanar. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts.

Comment

Diphthalonitriles have been used as starting materials for network polymeric phthalocyanines (McKeown, 1998). Phthalocyanine compounds have been widely studied for over 50 years due to their varied applications (Moser \& Thomas, 1983). Polymeric phthalocyanines have been described for use as dyes and industrial high-technology materials and are also of additional interest because of their high thermostability (Leznoff \& Lever, 1989-1996).

An ORTEPIII (Burnett \& Johnson, 1996) plot of the title structure, (I), is shown in Fig. 1. The bond distances and angles in (I) are normal (Table 1). The average $\mathrm{N} \equiv \mathrm{C}$ bond distance in cyano groups, 1.139 (4) \AA, is short enough to indicate their triple-bond character. This value is in good agreement with those in 4,4'-[2,2-methylenebis(4-chlorophenoxy)]diphthalonitrile (Çoruh et al., 2002) and 4-(phenothiazin-10-yl)benzene-1,2-dicarbonitrile (Öztürk et al., 1999). The $\mathrm{O}-\mathrm{C}$ bond distances correspond to those in 4,4'-[2,2-methylenebis(4chlorophenoxy)]diphthalonitrile (Çoruh et al., 2002).

The three aromatic rings in the molecule are essentially planar. The dihedral angle between ring $A(\mathrm{C} 13 / \mathrm{C} 11 / \mathrm{C} 4 / \mathrm{C} 16 /$ $\mathrm{C} 15 / \mathrm{C} 8)$ and ring $B(\mathrm{C} 7 / \mathrm{C} 21 / \mathrm{C} 14 / \mathrm{C} 17 / \mathrm{C} 20 / \mathrm{C} 12)$ is $70.73(7)^{\circ}$, while the dihedral angle between ring A and ring $C(\mathrm{C} 3 / \mathrm{C} 18 /$ $\mathrm{C} 28 / \mathrm{C} 29 / \mathrm{C} 27 / \mathrm{C} 5)$ is $73.54(0.10)^{\circ}$. The angle between rings B and C is $69.23(0.10)^{\circ}$.

The crystal structure is stabilized by intermolecular C$\mathrm{H} \cdots \mathrm{N}$ contacts (Table 2).

Experimental

N-Phenyl-2, 2^{\prime}-iminodiethanol ($1.17 \mathrm{~g}, 6.46 \mathrm{mmol}$) was dissolved in dry DMF and 4-nitrophthalonitrile ($2.15 \mathrm{~g}, 12.43 \mathrm{mmol}$) was added. After stirring for 30 min , finely ground anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}$, 20 mmol) was added portionwise over 2 h with vigorous stirring. The reaction mixture was stirred for 24 h at 333 K and then poured into ice water (200 g). The product was filtered off and washed with water until the filtrate was neutral. The product was then refluxed in

Figure 1
An ORTEPIII drawing (Burnett \& Johnson, 1996) of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
methanol, filtered and dried. The title compound, (I), was crystallized from dimethylformamide by slow evaporation at room temperature (yield $0.29 \mathrm{~g}, 10.8 \%$). M.p.: $433 \mathrm{~K} . \operatorname{IR}\left(\nu_{\max } / \mathrm{cm}^{-1}\right)$: 3100-3040 ($\mathrm{Ar}-$ CH), 2940-2900 (CH), 2220 (CN), 1660, 1588, 1556, 1484, 1452, 1424, $1388,1360,1288,1240,1192,1168,1116,1092,1028,1016,984,952$, $908,888,844,828,748,725,690,640,624,590,550,520 .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $4.01(t, 2 \mathrm{H}), 4.47(t, 2 \mathrm{H}), 6.68-7.95(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (acetone- d_{6}): $51.18\left(\mathrm{CH}_{2}-\mathrm{N}\right), 68.17\left(\mathrm{CH}_{2}-\mathrm{O}\right), 107.93,113.52,116.47$, 117.06, 117.97, 120.75, 120.93, 130.19, 136.38, 147.94, 163.18. Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$: C 72.04, H 4.42, N 16.16\%; found: C 72.04, H 4.39, N 16.14\%.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$
$M_{r}=433.46$
Orthorhombic, Pbca
$a=16.621(5) \AA$
$b=9.004(5) \AA$
$c=31.494(5) \AA$
$V=4713(3) \AA^{3}$
$Z=8$
$D_{x}=1.222 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Nonius KappaCCD diffractometer $\omega-2 \theta$ scans
Absorption correction: none
6338 measured reflections
3484 independent reflections 1872 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.138$
$S=1.01$
3484 reflections
298 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 3683 \\
& \text { reflections } \\
& \theta=3.87-64.5^{\circ} \\
& \mu=0.65 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, dark yellow } \\
& 0.25 \times 0.18 \times 0.13 \mathrm{~mm} \\
& \\
& \\
& R_{\text {int }}=0.001 \\
& \theta_{\max }=63.0^{\circ} \\
& h=-18 \rightarrow 18 \\
& k=-9 \rightarrow 9 \\
& l=-36 \rightarrow 35 \\
& \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0507 P)^{2}\right. \\
& \quad+0.7824 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.11 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.10 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 4$	$1.344(3)$	$\mathrm{O} 6-\mathrm{C} 19$	$1.436(3)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.437(3)$	$\mathrm{C} 23-\mathrm{N} 31$	$1.135(4)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.378(3)$	$\mathrm{C} 24-\mathrm{N} 30$	$1.144(4)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.443(3)$	$\mathrm{C} 25-\mathrm{N} 32$	$1.137(4)$
$\mathrm{N} 2-\mathrm{C} 22$	$1.445(3)$	$\mathrm{C} 26-\mathrm{N} 33$	$1.139(4)$
$\mathrm{O} 6-\mathrm{C} 2$	$1.352(3)$		
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 10$	$118.2(2)$	$\mathrm{C} 12-\mathrm{O} 6-\mathrm{C} 19$	$119.6(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 9$	$121.2(2)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$113.0(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 22$	$121.7(2)$	$\mathrm{N} 2-\mathrm{C} 22-\mathrm{C} 19$	$113.0(2)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 22$	$117.1(2)$		

Table 2
Intermolecular contacts $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 19-\mathrm{H} 19 A \cdots \mathrm{~N} 31^{\mathrm{i}}$	0.97	2.59	$3.546(5)$	170
Symmetry code: (i) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$.				

The H atoms were located geometrically and refined using a riding model. The H atoms were located geometrically and refined using a riding model, fixing the aromatic $\mathrm{C}-\mathrm{H}$ distance at $0.93 \AA$, the methylene $\mathrm{C}-\mathrm{H}$ distance 0.97 A .

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

The authors thank S. García-Granda for data collection and collaboration.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Çoruh, U., Işık, Ş., Akdemir, N., Aar, E., Vázquez-López, E. M. \& Erdönmez, A. (2002). Acta Cryst. E58, o953-o955.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols 1, 2, 3 \& 4. Weinheim \& New York: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Moser, F. H. \& Thomas, A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Öztürk, S., Işık, Ş., Fun, H-K., Kendi, E., Aar, E., Şaşmaz, S. \& İbrahim, A. R. (1999). Acta Cryst. C55, 395-397.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

